quels sont les critères de comparaison pour trouver le bon LLM

Dans le paysage actuel des modèles de langage de grande envergure (LLM), la sélection du modèle optimal pour une entreprise ne repose pas uniquement sur la performance en termes de compréhension du language et de génération de texte ou de chat. Il est essentiel d’établir un équilibre optimal entre trois piliers: la qualité de la réponse, le coût des tokens et la vitesse de réponse, formant ainsi un triptyque décisionnel.

Le graphique indique que Mistral se distingue par sa vitesse de traitement des tokens par seconde à un coût d’inférence comparable à celui des autres LLMs, ce qui en fait un concurrent sérieux dans la catégorie dite « Workhorse Tier ». Cela suggère que Mistral pourrait être un choix judicieux pour des tâches nécessitant rapidité et coût modéré sans compromettre excessivement la qualité de la réponse attendue.

Cependant, les modèles situés dans le « Intelligence Tier » comme Claude 3 Opus, GPT-4, et Gemini Pro 1.5, bien qu’affichant des coûts plus élevés et des vitesses de traitement moindres, suggèrent une capacité supérieure de compréhension et de création de contenu sophistiqué. Ces LLMs pourraient être privilégiés pour des applications où la nuance et la sophistication de la réponse sont critiques, justifiant ainsi leur coût supérieur. On parle bien de coûts démultipliés qui peuvent allourdir considérablement la facture.

La médiane recherchée est donc un compromis stratégique où chaque dimension est optimisée en fonction des besoins spécifiques de l’utilisation que l’on peut en faire. Dans le cadre du pré-entraînement, où les LLMs acquièrent des compétences linguistiques fondamentales, et de l’ajustement fin (fine tuning), qui affine ces compétences pour des applications spécifiques, une attention particulière doit être portée au coût d’inférence et à la vitesse, car ces phases peuvent s’avérer énergivores et coûteuses. Une moindre vitesse empêchera l’utilisation de ces technologies sur des callbots de TALKR car la vitesse de réponse en mars 2024 est est supérieure à 1 seconde sauf à condition de mettre le prix au niveau des puces Nvdia qui vont traiter les calculs.

Le choix d’un LLM et des IA Génératives ne doivent pas être dicté seulement par la performance seule, mais plutôt par une analyse approfondie du coût total de possession (TCO), qui englobe le coût initial de configuration, les coûts d’inférence, les coûts de maintenance, et les coûts associés. Une architecture hybride peut être envisagée, où des modèles plus rapides et moins coûteux sont utilisés pour des tâches courantes, tandis que des modèles plus coûteux et performants sont réservés à des tâches complexes. Sans parler aussi du problème lié au RGPD. Ou vont les datas ? que font les entreprises avec ces données. Cela ajoute alors une nouvelle dimension dans le choix final de l’outil que l’on va utiliser.

En outre, l’écosystème open source, avec des projets comme Llama, offre une alternative attractive, permettant aux entreprises de déployer des LLMs dans un cadre commercial sans les contraintes des solutions propriétaires, offrant ainsi une plus grande flexibilité et potentiellement des coûts réduits mais nos tests au seins de TALKR sont assez décevants en terme de qualité de réponse à moins de générer des prompts très longs : la longueur des prompts ajoute aussi alors une nouvelle dimension. Un mauvais LLM avec un bon prompt peut donner des résultats performants selon nos tests internes.

En tant que data scientist, l’analyse quantitative et qualitative de ces modèles nécessite une approche rigoureuse, intégrant des évaluations de performance (benchmarking), des analyses coût-bénéfice, et des considérations sur l’empreinte carbone associée aux opérations d’entraînement et d’inférence des modèles. La décision finale repose sur la synergie entre les exigences métier, l’expérience utilisateur et les contraintes budgétaires, orchestrées avec une compréhension approfondie des modèles LLM disponibles. C’est un véritable casse-tête !

Pour progresser dans cette légère analyse, il est impératif de se pencher sur la latence algorithmique, qui est souvent un compromis inévitable entre la vitesse d’exécution et la précision du modèle. La latence se manifeste par le délai entre la requête d’entrée et la réponse du système, ayant une incidence directe sur l’expérience utilisateur et la fluidité des interactions, particulièrement cruciales pour les applications en temps réel. Bien souvent mis à l’écart mais indispensable pour les outils conversationnels que nous développons au sein de notre entreprise.

Dans un contexte d’application, les modèles tels que Mistral et Gemini 1.0 Pro pourraient offrir un avantage opérationnel, du fait de leur efficience temporelle. Pour les applications nécessitant des interactions quasi instantanées, telles que les assistants virtuels ou les outils de support en direct, la minimisation de la latence est primordiale. L’inférence rapide permet de maintenir l’engagement de l’utilisateur et d’augmenter la satisfaction client, en dépit d’une légère dégradation de la qualité de réponse. Nous cherchons des outils capable de descendre en dessous de 500ms pour ne pas dégrader l’experience utilisateur.

Cependant, pour des applications exigeant un niveau élevé de sophistication, telles que les systèmes de recommandation ou l’analyse sémantique poussée, il est souvent préférable d’opter pour des modèles comme GPT-4 ou Opus, en dépit de leur coût plus élevé et de leur vitesse plus lente. Ces modèles avancés offrent une profondeur de compréhension et une créativité dans les réponses qui peuvent être déterminantes pour la valeur ajoutée du service ou du produit final. Ces modèles sont fortements plébiscité pour des tâches plus complexes. Cela devient d’autant plus intéressant qu’avec l’arrivée de GPT5 les anciens modèles devenant obselètes, les coûts des tokens vont s’éffondrer tout en conservant des qualités de réponses convenables avec des vitesse de traitement totalement abordable. Cela va donc avoir une incidence direct sur la propagation de bots vocaux partout dans le monde à des couts raisonnables.

Le coût de maintenance doit aussi être considéré, incluant les mises à jour des modèles et le monitoring continu des performances. Dans le cadre d’un modèle open source comme Llama, bien que l’absence de frais de licence soit attrayante, les coûts cachés liés à la maintenance, l’intégration continue, et la gestion des infrastructures doivent être évalués minutieusement.

il va de soit que nous devons envisager les coûts indirects associés, tels que ceux liés à l’empreinte écologique des infrastructures de calcul nécessaires à l’entraînement et au déploiement des LLMs. La consommation énergétique et les émissions de carbone associées aux data centers qui hébergent ces modèles ne sont pas négligeables et peuvent influencer la décision d’une entreprise soucieuse de sa responsabilité environnementale. Ce sujet reste sous jacent et pas encore tellement mis en avant malgré les politiques RSE des grandes entreprises qui n’ont pas encore pris conscience des dangers énergivores de ces modèles. En effet, la moindre requête consomme de l’énergie. il est donc important de savoir utiliser à bon escient, ces modèles dans les conversations, uniquement là ou on peut en avoir l’utilité.

L’adoption d’un LLM pour n’importe quelle organisation doit résulter d’une analyse multidimensionnelle et d’une compréhension approfondie du rapport « qualité-prix-vitesse-energie-sécurité« . L’architecture choisie doit être agile, évolutive, et adaptée aux besoins spécifiques, tout en étant éco-responsable. Les innovations dans l’optimisation des modèles et les nouvelles avancées en matière de réduction de la latence et du coût d’opération continueront de remodeler le paysage des LLMs, offrant ainsi aux entreprises des opportunités de rester compétitives dans un monde numérique en rapide mutation.

pourquoi le secteur RH est chamboulé par les IAs

L’intelligence artificielle (IA) transforme radicalement le monde professionnel, notamment dans les domaines du management, du droit, et de la gestion des ressources humaines (RH). Cette révolution technologique soulève de multiples questions que nous nous posons chez TALKR quant à son intégration et son encadrement dans l’environnement de travail d’aujourd’hui et de demain. Cet article se propose de comparer différents modèles d’IA en se concentrant sur deux problématiques majeures qui combinent le management, le droit, et la gestion des RH, ainsi qu’une question spécifique liée au recrutement et à la gestion des talents dans le contexte post-COVID-19. En effet le monde change vite et tout le monde a les yeux rivés sur les IAs génératives qui vont certainement remplacer le travail de demain.

Problématique 1 : L’équilibre entre automatisation et humanisation des processus RH
L’intégration de l’IA dans les processus de RH vise à automatiser des tâches répétitives et à optimiser la prise de décision grâce à l’analyse de données : on est tous d’accord sur cela car cela améliore au quotidien la vie des équipes qui n’ont plus à fournir des travaux pénibles et fastidieux. Cependant, cela pose la question de l’équilibre à trouver entre l’efficacité apportée par l’automatisation et la nécessité de préserver une approche humanisée dans la gestion des relations avec les employés. Les modèles d’IA doivent donc être évalués selon leur capacité à améliorer les processus RH tout en respectant les valeurs humaines et éthiques fondamentales. En effet, nous constatons que l’IA n’est pas toujours capable de détecter entre les lignes les softskills des candidats par exemple et peut donc aisément passer à coté d’un profil à haut potentiel.

Problématique 2 : La conformité aux cadres légaux et éthiques
L’utilisation de l’IA dans le management et la RH doit se faire dans le respect des cadres légaux et éthiques en vigueur. Cela inclut les lois sur la protection des données personnelles, la non-discrimination à l’embauche, ou encore le respect de la vie privée des employés. Les différents modèles d’IA doivent donc être capables de garantir leur conformité avec ces normes, ce qui pose la question de leur adaptabilité aux législations qui varient d’un pays à l’autre. LA encore de nombreux biais s’installent un peu plus tous les jours. Les IAs sont entrainées sur des modèles qui laissent peu de chance à la diversité et donc vont pénaliser certaines typologie de personnes en se basant sur des critères qui ne reflètent pas la réalité. Ainsi les entreprises risquent d^être à la recherche de jumeaux numériques qui n’existent pas toujours.

Le recrutement et la gestion des talents à l’ère du télétravail
Le recrutement et la gestion des talents dans un monde post-COVID-19, où le télétravail gagne en popularité, soulèvent de nouvelles problématiques. Comment les modèles d’IA peuvent-ils aider les entreprises à attirer et retenir les talents dans un contexte où les attentes des employés évoluent vers plus de flexibilité et un meilleur équilibre entre vie professionnelle et vie privée ? Cette question aborde la nécessité pour les modèles d’IA de s’adapter à un marché du travail en mutation, où le sens attribué au travail et la qualité de vie au travail deviennent des critères de plus en plus déterminants dans les choix professionnels des individus. le télétravail est un véritable atout pour les personnes qui savent s’organiser et celle qui ne veulent pas perdre une heure dans les transports en commun (puis tomber malade) ou en voiture (disons 10 heures par semaine sans compter les bouchons du périph). Nous travaillons en remote depuis 2011 avec notre équipe tech. l’idée de travailler dans un bureau me parait tellement inadéquate dans le monde actuel. cela ne veut pas dire non plus qu’il faut rester avachi sur sa chaise en procrastinant toute la journée derrière Netflix. Le remote demande de la rigueur et de se lever le matin : pas question de rester en slibard et d’avoir juste une chemise sur zoom avec un client, il faut aussi avoir un espace de travail aménagé (surtout en couple) sinon c’est le « bordel sonore ». il faut aussi trouver des moments privilégiés pour se retrouver physiquement si possible avec l’équipe et sortir de chez soi. Optimiser son temps, c’est améliorer sa vie et donner du sens. Après tout, on peut aussi télétravailler sur un bateau quoi qu’on peut vite être distrait par l’extérieur. les grosses entreprises devraient faire des tests d’A/B testing pour voir quelles seraient les équipes les plus productives. il y aurait de sacrées surprises. d’où faire la distinction entre les boites aux cultures rh bullshit Vs boîtes qui ancrent le remote dans la culture de l’entreprise de façon qualitative. Vu comme une opportunité, voire le seul moyen de maintenir en vie une entreprise pendant la période Post covid, le télétravail a été mis en place dans l’urgence pour la plupart des organisations pendant la crise sanitaire des années 20. Seules les sociétés qui avaient déjà négocié des accords sur le sujet n’ont pas vu ce changement comme une « délestation totale » du pouvoir managérial et de son contrôle.

La question de confiance est primordiale et pour l’avoir constaté avec un collaborateur en full remote, tout le monde n’en est pas digne… Et là, on reboucle avec la théorie des X et des Y de Mc Gregor et la vision des employeurs quant à leurs collaborateurs apparait clairement, un bon indicateur du climat et de la culture de l’entreprise… Le mode hybride me parait donc être le bon compromis pour chacune des parties car sans rencontre, sans échange comment créer un collectif de travail dans une équipe, comment un manager peut il prendre le pouls de son équipe, comment conserver une partie d’humain si le échanges ne se font que par Teams et écrans interposés avec des bots qui font les comptes rendus ? Le télétravail peut aussi être un vecteur de la déshumanisation du travail. (extrait d’un texte de Stéphanie M)

Les modèles d’IA et les LLMs offrent des perspectives prometteuses pour révolutionner le management, le droit, et la gestion des RH. Cependant, leur efficacité et leur acceptation dépendront de leur capacité à intégrer les enjeux éthiques, humains, et légaux inhérents à ces domaines. La comparaison de ces modèles sur la base des problématiques et de la question soulevées permettra d’évaluer leur pertinence et leur adaptabilité aux défis contemporains du monde du travail.

Pourquoi les Centres d’Appels à l’Ère de l’IA vont disparaitre

La révolution de l’intelligence artificielle (IA), menée par des technologies avancées telles que ChatGPT, Gemini, claude, pose une question cruciale pour l’industrie des centres d’appels ☎️ comme Téléperformance, Webhelp ou encore Majorel  : cette innovation marque-t-elle le début de la fin pour les call centers traditionnels ? Cette interrogation est particulièrement pertinente pour des leaders du secteur comme Téléperformance, qui malgré une année record avec 8 milliards de chiffre d’affaires et 1,3 milliard de bénéfices, voit son modèle d’affaires ébranlé par l’évolution rapide de l’IA en 2024 !  Les tâches les plus susceptibles d’être automatisées par l’intelligence artificielle ne sont pas uniformément réparties dans le monde du travail. Certaines catégories semblent plus à risque que d’autres notamment dans les centres de contacts qui vont s’automatiser de plus en plus. Les investisseurs se tournent davantage vers l’IA et les Callcenters sont dans le colimateur. 

La capacité de l’IA à résoudre efficacement et à moindre coût les problèmes des clients remet en question la viabilité des centres d’appels traditionnels. Pourquoi, en effet, continuer à investir dans une main-d’œuvre humaine onéreuse quand des solutions technologiques promettent de faire le même travail pour une fraction du prix ? Cette perspective a déjà eu un impact considérable sur la valorisation boursière de Teleperformance, entraînant une chute de deux tiers en seulement 18 mois ‘Source 2024). il faut bien comprendre qu’un humain à Madagascar est aujourd’hui 4 fois plus cher qu’un assistant virtuel au téléphone ! 

Face à cette menace existentielle, Daniel Julien, le PDG de Teleperformance, adopte une position optimiste, estimant que l’IA et les callbots ne remplaceront pas les humains et les conseillers clientèles mais servira plutôt à les assister. Selon lui, les robots vocaux se chargeraient des tâches simples, laissant le soin aux agents humains de résoudre les problèmes plus complexes. Cependant, cette vision pourrait ne pas tenir compte de l’impact significatif de l’IA sur les coûts d’interaction client dans le futur, qui pourraient drastiquement baisser, affectant les marges des centres d’appels. Alors évidemment ce discours émmane directement de la direction mais La vision de TALKR est bien plus pessimiste et pour cause. Nous avons déjà discuté par le passé avec TP en 2017 en mettant en garde avec l’arrivée des chatbots mais les équipes internes on simplement fermé les yeux fasse à la futur déferlante qui allait s’abbatre sur ce type de société. De notre coté, l’évolution constante et les progrès plus que significatifs depuis les dernières années, pousse les technologies No-code à promouvoir des assistants virtuels doués de capacité de raisonnement de plus en plus poussés voir bien plus poussés que les humains si on en croit Sam Altman et la version de GPT-5 qui sera commercialisée en cours d’année 2024. L’arrivée de voix de synthèses de plus en plus performantes en temps quasi réel permet aussi de pouvoir plugger des outils no-code afin de répondre de manière appropriée dans des délais acceptable afin de traiter une conversation automatique de bout en bout, Le déploiement d’un assistant vocal ayant recours à l’intelligence artificielle est notre quotidien au sein de TALKR. L’effondrement de ce type de société nous parait inévitable si la société n’intègre pas dans les prochaines années des solutions d’IA avancées.  la place de l’humain est en effet menacée sur du moyen terme et nous assisterons à des descentes aux enfers pour les sociétés qui n’auront pas anticipé le virage. 

Dans ce contexte, le modèle économique des centres d’appels ☎️, traditionnellement basé sur une main-d’œuvre à faible coût (offshore), est mis à rude épreuve. La question se pose alors : Teleperformance et ses semblables parviendront-ils à se transformer en adoptant un modèle plus axé sur la technologie, en s’appuyant peut-être sur des partenariats avec des entreprises innovantes dans le domaine de l’IA, comme TALKR ? 

L’avenir des centres d’appels est incertain, et tout porte à croire que le secteur est à l’aube d’une transformation majeure car le progès n’attend pas !  Ce qui est certain, c’est que les prochaines années seront déterminantes et pourraient bien redéfinir la manière dont les entreprises gèrent la relation client avec des robots qui ne se mettent pas en grève et qui répondront de manière encore plus empathique dans le futur. Le message est clair : il est temps de s’adapter ou de risquer l’obsolescence dans un monde de plus en plus tourné vers l’IA.

Comment sécuriser les chatbots avec des llms pour éviter les hallucinations

Renforcement de la Sécurité des Chatbots : Une Nécessité Impérative dans l’Ère de l’IA Générative pour palier aux éventuels erreurs conversationnelles.

Dans le paysage numérique actuel, où l’intelligence artificielle (IA) générative prend de plus en plus d’ampleur avec les LLMs, la sécurité des chatbots et des callbots est devenue un sujet de préoccupation majeure pour les organisations. Les entreprises qui intègrent ces technologies dans leurs opérations doivent être particulièrement vigilantes. Nous intégrons des audits de  sécurité pour chatbots et callbots à un moment crucial pour palier aux risque de débordements et d’hallucination.

L’Importance de la Sécurité dans les Chatbots Génératifs

Les chatbots basés sur les modèles de langage de grande taille (LLM) ont transformé l’interaction entre les entreprises et leurs clients au travers des mailbots et autres chatbots. Cependant, cette avancée n’est pas sans risques. Les attaques par injection (code & contenu) et autres menaces peuvent compromettre non seulement la sécurité des données mais également l’intégrité de l’interaction utilisateur. Un chatbot mal sécurisé peut entraîner des fuites d’informations sensibles et nuire à la réputation de l’entreprise ou simplement donner une information eronnée qui ne correspond en rien à la vision de l’entreprise et aux promesses de celle-ci. Des exemples de bots ayant entrainé des effets « Streisand » sur la toile et font la risée des entreprises. le bot de DPD groupe conseille pas l’internaute comme il faut et enfonce la marque DPD, un internaute a pu acheter une Chevrolet pour 1 euro en 2024. les exemples se multiplient : Il faut imaginer que les IA de 2025  vont forcément palier à ce type d’écart. plus les intelligences artificielles seront fortes plus elles pourront protéger les humains de leur propres biais.  Nous seront dominés par les IAs pour le meilleur et pour le pire.

Un Bouclier Contre les Menaces externes

Fort de son expertise et ayant lancé une centaine de bots sur le marché, Talkr.ai propose aux  entreprises des chatbots basés sur l’IA générative. toutefois nous identifions et résolvons les vulnérabilités potentielles en garantissant ainsi une interaction sûre et sécurisée pour les utilisateurs. cela va du prompting ou d’autres mécanismes qui permettent d »éviter les écueils.

Les Bénéfices d’un Audit de Sécurité préventif

  1. Détection des Failles de Sécurité : L’audit permet d’identifier les points faibles susceptibles d’être exploités par des attaquants, offrant ainsi une première étape cruciale vers le renforcement de la sécurité.
  2. Recommandations Personnalisées : À l’issue de l’audit, les entreprises reçoivent des conseils sur mesure pour améliorer la sécurité de leurs chatbots, adaptés à leurs besoins spécifiques et à leur infrastructure.
  3. Expérience Utilisateur Fiable : En sécurisant les chatbots, les entreprises assurent une interaction sans risque pour leurs utilisateurs, renforçant ainsi la confiance et l’engagement.

L’offre d’audit de sécurité de Talkr.ai représente une opportunité unique pour les entreprises de renforcer la sécurité de leurs chatbots. En cette ère de l’IA conversationnelle, investir dans la sécurité n’est pas seulement une mesure préventive mais une stratégie essentielle pour garantir des expériences utilisateur engageantes et sécurisées. Les incidents de sécurité passés dans le domaine des chatbots soulignent l’importance de cette démarche. Ne faites pas la même erreur ; assurez-vous que vos chatbots sont bien protégés.

Callbots : la solution moderne face au défi des coûts de main-d’œuvre en centre d’appels

Les centres d’appels offshores, essentiels à la gestion de la relation client pour de nombreuses entreprises, font face à un défi de taille : le coût de la main-d’œuvre. La délocalisation hors d’europe, pratique courante pour réduire ces coûts, soulève des questions tant sur le plan éthique que sur la qualité du service fourni. Les pays comme le Maroc, la Tunisie, et plus récemment Madagascar et l’Île Maurice, sont devenus des destinations privilégiées pour ces délocalisations en masse, offrant des coûts de main-d’œuvre nettement inférieurs à ceux des pays d’origine des entreprises.

Cependant, cette stratégie n’est pas sans conséquence. Elle peut entraîner une qualité de service variable (voir déplorable) et soulever des questions éthiques concernant les conditions de travail et les salaires offerts à ces employés souvent sous payés. Par exemple, un téléopérateur en Tunisie peut gagner entre 200 et 600€ par mois, selon son expérience, dans un secteur où les avantages fiscaux et les coûts de télécommunication bas sont des atouts majeurs pour les investisseurs des pays occidentaux. Cependant, ces économies viennent souvent au prix de conditions de travail qui peuvent être difficiles et d’une course au bas coût qui met en péril le bien-être des employés. On pourrait considérer cela comme une forme d’esclavage moderne peu légitime si on creuse pour voir les conditions de travail. Faire travailler des personnes dans des conditions parfois spartiates n’est pas une condition de vie acceptable. il faut aussi y voir une amélioration des infrastructures en matière de télécommunication qui sont relativement performantes grâce à la fibre optique et la voix sur IP (SIPTRUNK) qui permet de passer des appels en local.

Face à ces défis, les callbots représentent une alternative innovante et efficace face à la délocalisation des agents. Ces assistants virtuels, alimentés par l’intelligence artificielle, offrent plusieurs avantages par rapport aux centres d’appels traditionnels :

  • Disponibilité 24/7 : Contrairement aux employés humains, les callbots peuvent opérer sans interruption, offrant une réponse immédiate à tout moment. Ne tombent jamais malade et ne font pas grêve.
  • Consistance et qualité du service : Les callbots fournissent des réponses précises et cohérentes, éliminant les variations de qualité dues aux facteurs humains. ils peuvent soulager les centres de contacts et donc pousser les personnes à améliorer leurs compétences.
  • Réduction des coûts : L’implémentation de callbots permet de réaliser des économies substantielles sur le long terme, réduisant la dépendance envers la main-d’œuvre offshore et ses coûts associés.
  • Amélioration de l’expérience client : Les progrès dans le domaine de l’intelligence artificielle permettent aux callbots d’offrir une expérience utilisateur de plus en plus personnalisée et satisfaisante.
  • L’amélioration des solutions de speech to texte et du clonage vocal permet aussi de vocaliser de manière à ce que l’interlocuteur peut ne plus reconnaitre qu’il a « affaire » à un robot. En revanche, les accents assez prononcés par certaines personnes sont un frein évident pour les européens. c’est aussi un dilemme entre éviter de payer cher et de se confronter en retour à des personnes qui ne maitrisent pas toujours un français corrects. Cela agace bon nombre de Français qui se sentent harcellés par des appels d’inconnus venus de toute part
  • L’hybridation homme machine est la seule issue des centres de contacts sinon ils seront voués à mourrir et à s’éteindre tout en étant remplacé par des machines plus performantes grâce à l’intelligence artificielle. C’est leur destinée dira t’on !

L’adoption des robocalls par les entreprises et dans les centres de contact se présente donc comme une solution d’avenir évidente, répondant aux enjeux économiques sans compromettre la qualité du service client. Elle témoigne d’une évolution vers des pratiques plus durables et éthiquement responsables dans la gestion des centres d’appels pour des coûts moindre. Les entreprises désireuses de s’inscrire dans cette modernité se doivent de considérer les avantages des callbots, non seulement en termes de coûts mais aussi pour leur potentiel d’améliorer significativement l’expérience utilisateur.  Peu d’entreprises de callcenters ont décidé de prendre le pas en 2024, cela révèle bien souvent une incompréhension des enjeux à venir et une volonté de tenter de conserver le plus longtemps des modèles de fonctionnements archaïques même si ils ont fait leur temps pendant plus de 50 ans. les délocalisations permettaient d’abaisser les coûts de production de 30 à 40%  demain c’est L’IA qui sera bradée au plus offrant pour fournir un service de qualité, espérons le meilleure que  dans certains centres actuels. Est-ce une bonne chose ? il faudra voir dans le temps.

entretien AFRC et Katya lainé

L’automatisation conversationnelle pour une relation client optimisée !

Dans cet entretien, Katya Lainé cofondatrice et CEO de Talkr.ai nous présente la nouvelle plateforme de Kwalys, qui permet de concevoir des bots intelligents simplement. Elle nous explique notamment en quoi cette démarche contribue à améliorer l’expérience client. 

Dans le monde de la relation client, quel est votre positionnement ?

Talkr.ai propose des solutions de VoiceBot et PhoneBot. Nous sommes des experts en expérience utilisateur et en automatisation conversationnelle. Concrètement, nous aidons les organisations à optimiser leurs interactions avec leurs différents publics grâce à des assistants virtuels intelligents. Ces derniers permettent à nos clients de créer de véritables conversations automatisées et de développer une expérience omnicanale unique pour les utilisateurs finaux. Pour se faire, nous mettons à leur disposition une plateforme no-code qui permet de concevoir des assistants virtuels multicanaux très simplement.   En effet, nous sommes les premiers à proposer la conception des assistants « as a service » dans le monde. 

Au-delà, Talkr.ai est aussi un opérateur de services vocaux et de téléphonie. Aujourd’hui, nos expertises nous permettent de couvrir l’intégralité de la relation client multicanale avec une forte spécialisation dans la voix et dans la téléphonie. 

 

Vous permettez donc à vos clients de construire facilement un bot simple. Qu’en est-il ? Comment cela fonctionne-t-il ?

Notre plateforme no-code permet à nos clients de concevoir des bots omnicanaux très facilement. Aucune compétence technique n’est requise. Ces bots peuvent ensuite être connectés  au canal choisi tout aussi facilement. Et une fois en ligne, il est bien évidemment possible de les modifier sans aucune difficulté. 

C’est véritablement la valeur ajoutée de notre plateforme no-code qui a été pensée pour être utilisée par des entreprises qui ne disposent pas forcément d’équipes techniques dédiées. Notre plateforme est aussi interopérable et peut se connecter à des solutions de reconnaissance de parole notamment (speech to text ou text to speech). Au-delà de la rapidité de conception et de mise en service, elle permet une mise en place des bots et une exploitation des assistants à un coût très compétitif.
En parallèle, nous mettons aussi notre technologie à la disposition d’autres acteurs, notamment des cabinets de conseil ou d’intégration de solutions technologiques afin qu’ils puissent proposer cette offre à leur propre client. Nous avons donc aussi un positionnement d’éditeur de solutions. 

En quoi est-ce une démarche pertinente ? Comment accompagnez-vous vos clients ?
Au-delà des avantages que j’ai précédemment mentionnés, se doter d’assistants virtuels permet aux acteurs de la relation client de répondre au besoin d’immédiateté et d’accompagnement des consommateurs sur des tâches à faible valeur ajoutée, ce qui permet, d’ailleurs, aux agents de se concentrer sur celles à plus forte valeur ajoutée.  

En parallèle, nos assistants plug-and-play viennent remplacer ou compléter les SVI et les solutions d’accueil traditionnelles. Ils contribuent également à un traitement  plus rapide et efficace des demandes au service d’une meilleure expérience client.
Nous sommes convaincus que les entreprises doivent aujourd’hui opérer cette transformation pour proposer une relation client plus personnalisée. Et notre technologie, notre plateforme et nos solutions peuvent les aider à y parvenir !

 

Aujourd’hui, quels sont vos enjeux et perspectives ?

Il s’agit dans un premier temps de démocratiser notre technologie et de la rendre accessible au plus grand nombre (grands groupes, TPE, PME et start-up). Dans un second temps, notre enjeu est de nous développer à l’international. Nous avons des partenaires en Europe, aux  États-Unis, en Asie et en Amérique du Sud avec lesquels nous collaborons pour accélérer notre déploiement dans le monde.

Et pour finir, au cœur de nos enjeux et nos ambitions, on retrouve notre volonté d’accompagner nos clients afin qu’ils puissent proposer à leurs clients une interaction simplifiée, fluide et efficace en  capitalisant notamment sur un mode de fonctionnement hybride « humain/machine ».

TALKR