L’utilisation de ChatGPT intégré à des services SaaS B2B (Business-to-Business) peut être très bénéfique pour les entreprises, mais elle comporte également des risques potentiels qu’il est important de prendre en compte. Dans cet article, nous allons examiner quelques-uns des risques les plus courants associés à l’utilisation de ChatGPT dans un contexte professionnel.
Tout d’abord, la confidentialité des données est une préoccupation majeure lors de l’utilisation de ChatGPT. En effet, l’application peut impliquer le partage de données confidentielles entre les utilisateurs et l’application. Il est donc essentiel que les données soient protégées de manière adéquate pour éviter toute violation de la confidentialité.
La précision et la fiabilité des résultats générés par ChatGPT peuvent être un autre risque important. Bien que l’application soit très avancée, il est possible que les résultats ne soient pas toujours précis ou fiables, en particulier dans des contextes professionnels. Par conséquent, il est important de s’assurer que les résultats sont vérifiés avant d’être utilisés pour prendre des décisions importantes. Attention toutefois au biais algorithmique est également une préoccupation importante lors de l’utilisation de ChatGPT. Comme tout algorithme, ChatGPT peut être affecté par des biais, ce qui peut avoir des conséquences néfastes sur les résultats. Il est donc important de surveiller et d’atténuer ces biais pour garantir que les résultats sont justes et impartiaux.
En outre, la question de la responsabilité juridique peut être soulevée en cas de résultats incorrects ou inappropriés générés par ChatGPT. Par conséquent, il est important d’avoir des politiques claires et des procédures de gestion des risques en place pour atténuer ces risques.
La sécurité est un autre aspect important à prendre en compte lors de l’utilisation de ChatGPT. Comme pour toute application en ligne, il est important de s’assurer que ChatGPT est sécurisé contre les menaces externes telles que les cyberattaques et les intrusions malveillantes.
L’automatisation de la fonction support aux utilisateurs est un cas d’usage populaire pour les modèles de langage de grande envergure tels que GPT. En utilisant la technique du Fine Tuning, ces modèles peuvent être entraînés sur le corpus (KB) de l’entreprise pour fournir des réponses précises et cohérentes aux demandes des utilisateurs. Cela peut inclure la génération de synthèses, de tickets, etc. Les chatbots construits avec des modèles génératifs peuvent remplacer les modèles classiques de FAQ et les moteurs de recherche par des moteurs de réponse plus sophistiqués.
Cependant, l’utilisation de ChatGPT présente également des complexités, des coûts et des limites. Les modèles peuvent nécessiter beaucoup de ressources de traitement et de stockage, et peuvent être sujets à des erreurs ou des hallucinations. Il est important de se protéger contre les risques éthiques, sociaux et juridiques associés à l’utilisation de ces modèles en temps réel sans intervention humaine.
Il est également important de considérer les problèmes de souveraineté, tels que les solutions propriétaires versus open source, ainsi que la possibilité de fine-tuner les modèles pour des verticaux spécifiques. Une charte peut être utilisée pour encadrer l’utilisation de ChatGPT et se protéger contre ces risques. il convient de noter que ChatGPT est l’un des nombreux modèles de langage de grande envergure disponibles. Il présente des avantages et des inconvénients, tels que la consommation de ressources et la propriété intellectuelle. D’autres approches alternatives ou complémentaires, telles que les modèles dédiés, les modèles d’experts épars et l’hybridation de modèles, peuvent également être considérées. La question de la souveraineté numérique est également un enjeu important à prendre en compte dans l’utilisation de ces modèles.
En conclusion, l’utilisation de ChatGPT dans un contexte professionnel peut présenter des risques potentiels qu’il est important de prendre en compte et de gérer de manière proactive. En ayant des politiques claires, des procédures de gestion des risques et une approche réfléchie en matière de confidentialité, de précision, de biais, de responsabilité et de sécurité, les entreprises peuvent tirer le meilleur parti de cette technologie prometteuse tout en minimisant les risques potentiels.